If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-36x+8=0
a = 1; b = -36; c = +8;
Δ = b2-4ac
Δ = -362-4·1·8
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{79}}{2*1}=\frac{36-4\sqrt{79}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{79}}{2*1}=\frac{36+4\sqrt{79}}{2} $
| 1x-18=-3x+10 | | -3+2x=1x+3 | | -5+1X=-2x+13 | | 2.75w=77 | | x*0.07=12000 | | x+0.07=12000 | | (30-x)2+X.4=100 | | 10^v=10.000 | | 3x*5=22 | | 2d=3/5 | | 2.7e=11 | | 509.68=18.4s | | 3*(2x)^(1/2)=30 | | Y=-x^2+6x+91 | | -28=r/0.7 | | 12x+11=10x+1 | | 757.12=33.8z | | -2x+3=-38 | | -2x+3=38 | | U+5=b11 | | 168=14t | | -25x=x-20 | | 249.9=14.7t | | 10=m/6+6 | | 2x+1=7x+16 | | 7d+9=90 | | 91=13v | | 228=12v | | 126=9z | | b/6+6=13 | | c+36=180 | | c+139=361 |